
Release Notes for
Communications System
Toolbox™



How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Release Notes for Communications System Toolbox™

© COPYRIGHT 2011-2012 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents


Contents

R2012b

Support for C code generation for all System objects in
Communications Systems Toolbox . . . . . . . . . . . . . . . . . . 2

Support for HDL code generation for Reed-Solomon encoder,
decoder, and CRC detector blocks . . . . . . . . . . . . . . . . . . 3

Support for HDL code generation for Rectangular QAM and
PSK Demodulator System objects . . . . . . . . . . . . . . . . . . 4

LTE Zadoff-Chu sequence generator function . . . . . . . . . . . 5
LTE downlink shared channel example . . . . . . . . . . . . . . . . 6
Phase Noise block and System object, specifying phase
noise spectrum with a vector of frequencies . . . . . . . . . . 7

IEEE 802.11 beacon with captured data example . . . . . . . 8
P25 spectrum sensing example . . . . . . . . . . . . . . . . . . . . . . 9
MATLAB-based QPSK transceiver example . . . . . . . . . . . . 10
Design Iteration Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Constellation method for modulator and demodulator
System objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Specify initial states of Gold Sequence Generator and PN
Sequence Generator System objects . . . . . . . . . . . . . . . . 13

System object tunable parameter support in code
generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

save and load for System objects . . . . . . . . . . . . . . . . . . . . 15
Save and restore SimState not supported for System
objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Communications System Toolbox Functionality Being
Changed or Removed . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Frame-Based Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

R2012a

MIMO Multipath Fading Channel System Objects . . . . . . 34
Multi-H Support for CPM Modulator and Demodulator
Simulink Blocks and MATLAB System Objects . . . . . . . 35

GPU System Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
MATLAB Compiler Support for GPU System Objects . . . . 37
Code Generation Support . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

iii



HDL Code Generation from MATLAB code . . . . . . . . . . . . . 39
HDL Support For HDL CRC Generator Block . . . . . . . . . . 40
Enhancements for System Objects Defined by Users . . . . . 41
New and Enhanced Demos . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Functionality Being Changed or Removed . . . . . . . . . . . . . 44
Frame-Based Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

R2011b

New Demos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Turbo Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
USRP2 Migration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
GPU System Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Custom System Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Variable-Size Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
System Object Code Generation Support . . . . . . . . . . . . . . 61
Delayed Reset for Viterbi Decoder . . . . . . . . . . . . . . . . . . . . 62
System Objects FullPrecisionOverride Property Added . . . 63
APP Decoder System Object Parameter Change . . . . . . . . 64
System Object DataType and CustomDataType Properties
Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Conversion of System Object Error and Warning Message
Identifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Frame-Based Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

R2011a

Product Restructuring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
LDPC Encoder and Decoder System Objects . . . . . . . . . . . . 71
LDPC GPU Decoder System Object . . . . . . . . . . . . . . . . . . . 72
Variable-Size Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Algorithm Improvements for CRC Blocks . . . . . . . . . . . . . . 75
MATLAB Compiler Support for System Objects . . . . . . . . . 76
’Internal rule’ System Object Property Values Changed to
’Full precision’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

System Object Code Generation Support . . . . . . . . . . . . . . 78
LDPC Decoder Block Warnings . . . . . . . . . . . . . . . . . . . . . . 79
Phase/Frequency Offset Block and System Object
Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

iv Contents



Derepeat Block Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Version 2, 2.5, and 3.0 Obsolete Blocks Removed . . . . . . . . 82
System Objects Input and Property Warnings Changed to
Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Frame-Based Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
New Demos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

v



vi Contents



R2012b
Version: 5.3
New Features: Yes
Bug Fixes: No

1



R2012b

Support for C code generation for all System objects
in Communications Systems Toolbox

Effective this release, the following System objects provide C code generation:

• comm.ACPR

• comm.BCHDecoder

• comm.CCDF

• comm.CPMCarrierPhaseSynchronizer

• comm.GoldSequence

• comm.LDPCDecoder

• comm.LDPCEncoder

• comm.LTEMIMOChannel

• comm.MemorylessNonlinearity

• comm.MIMOChannel

• comm.PhaseNoise

• comm.PSKCarrierPhaseSynchronizer

• comm.RSDecoder

• comm.ThermalNoise

All CPU-based System objects in the Communications System Toolbox™
product generate C code. The GPU-based System objects do not generate
C code.

2



Support for HDL code generation for Reed-Solomon encoder, decoder, and CRC detector blocks

Support for HDL code generation for Reed-Solomon
encoder, decoder, and CRC detector blocks

Effective this release, the following blocks provide HDL code generation:

• General CRC Syndrome Detector HDL Optimized

• Integer-Input RS Encoder HDL Optimized

• Integer-Output RS Decoder HDL Optimized

To generate HDL code, you must have an HDL Coder™ license.

3



R2012b

Support for HDL code generation for Rectangular
QAM and PSK Demodulator System objects

Effective this release, the following System objects provide HDL code
generation:

• comm.BPSKDemodulator

• comm.QPSKDemodulator

• comm.PSKDemodulator

• comm.RectangularQAMDemodulator

To generate HDL code, you must have an HDL Coder license.

4



LTE Zadoff-Chu sequence generator function

LTE Zadoff-Chu sequence generator function

Communications System Toolbox includes a Zadoff-Chu sequence generator
function. This function is useful when modeling 3GPP LTE physical
layer characteristics, downlink primary synchronization signals, or the
uplink reference signals and random access preamble sequences. For more
information, see the lteZadoffChuSeq Help page.

5



R2012b

LTE downlink shared channel example

This example shows the Downlink Shared Channel (eNodeB to UE)
processing of the Long Term Evolution (LTE) physical layer (PHY)
specifications developed by the Third Generation Partnership Project
(3GPP). LTE-Advanced is one of the candidates for fourth generation (4G)
communications systems, approved by the International Telecommunication
Union (ITU), with expected downlink peak data rates in excess of 1Gbps (for
Release 10 and beyond). Using the Release 10 specifications, this example
highlights the multi-antenna transmission scheme that enables such high
data rates.

6

examples/lte-phy-downlink-with-spatial-multiplexing.html


Phase Noise block and System object, specifying phase noise spectrum with a vector of frequencies

Phase Noise block and System object, specifying
phase noise spectrum with a vector of frequencies

The Phase Noise block and System object™ now have more flexibility for
specifying spectral noise characteristics. You can specify a vector of phase
noise levels, at more than one frequency value. Previously, the software
allowed the specification of a single-phase noise level point. The new
implementation enables more realistic noise modeling in your communications
models, and allows you to visualize the phase noise spectrum that the block
or System object generates.

7



R2012b

IEEE 802.11 beacon with captured data example

This example shows reception of beacon frames in an 802.11 wireless local
area network (WLAN). You can select one of several captured signals and
view the data the beacon frame carries.

8

examples/ieee-802-11-wlan-beacon-frame.html


P25 spectrum sensing example

P25 spectrum sensing example

This example shows how to use cyclostationary feature detection to distinguish
signals with different modulation schemes, including P25 signals. It defines
four cases of signals: noise only, C4FM, CQPSK, and one arbitrary type. The
example applies the detection algorithm to signals with different SNR values
and determines when the signals can be classified as one of the four types.

9

examples/p25-spectrum-sensing.html


R2012b

MATLAB-based QPSK transceiver example

The QPSK Transmitter and Receiver example now includes a MATLAB®

implementation that uses System objects. This example models a digital
communications system to simulate the QPSK transmitter - receiver chain.
In particular, this example illustrates a method for tackling real-world
wireless communication issues, such as: carrier frequency/phase offset, timing
recovery, and frame synchronization.

10

examples/qpsk-transmitter-and-receiver.html


Design Iteration Workflow

Design Iteration Workflow

This example illustrates a design workflow and the typical iterations involved
in designing a wireless communications system with the Communications
System Toolbox. Because Communications System Toolbox supports both
MATLAB and Simulink®, this examples showcases separate design iterations
using MATLAB functions or Simulink models.

The workflow starts with a simple QPSK modulator system that transmits a
signal through an AWGN channel and calculates the bit error rate. To make
the system more realistic and improve system performance, the example
gradually introduces Viterbi decoding, turbo coding, multipath fading
channels, OFDM-based transmission and equalization, and multiple-antenna
techniques.

11



R2012b

Constellation method for modulator and
demodulator System objects

Effective this release, modulator and demodulator System object have a
constellation method. This method calculates or plots the ideal signal
constellation, depending on object settings. The following System objects have
the constellation method:

• comm.PSKModulator

• comm.PSKDemodulator

• comm.RectangularQAMModulator

• comm.RectangularQAMDemodulator

• comm.PAMModulator

• comm.PAMDemodulator

• comm.QPSKModulator

• comm.QPSKDemodulator

• comm.BPSKModulator

• comm.BPSKDemodulator

• comm.OQPSKModulator

• comm.OQPSKDemodulator

• comm.gpu.PSKModulator

• comm.gpu.PSKDemodulator

12



Specify initial states of Gold Sequence Generator and PN Sequence Generator System objects

Specify initial states of Gold Sequence Generator and
PN Sequence Generator System objects

You can specify the initial states for the PN Sequence Generator and Gold
Sequence Generator System objects as inputs to the stepmethod. You can use
these System objects as scrambling sequence generators. For packet-based
systems, including WiMAX and LTE, the initial conditions are a function of
time. Therefore, for simulation purposes, you must specify the initial states
as an input.

13



R2012b

System object tunable parameter support in code
generation

You can change tunable properties in user-defined System objects at any time,
regardless of whether the object is locked. For System objects predefined in
the software, the object must be locked. In previous releases, you could tune
System object properties only for a limited number of predefined System
objects in generated code.

14



save and load for System objects

save and load for System objects

You can use the save method to save System objects to a MAT file. If the
object is locked, its state information is saved, also. You can recall and use
those saved objects with the load method.

You can also create your own save and load methods for a System object you
create. To do so, use the saveObjectImpl and loadObjectImpl, respectively,
in your class definition file.

15



R2012b

Save and restore SimState not supported for System
objects
Compatibility Considerations: Yes

The Save and Restore Simulation State as SimState option is no longer
supported for any System object in a MATLAB Function block. This option
was removed because it prevented parameter tunability for System objects,
which is important in code generation.

Compatibility Considerations

If you need to save and restore simulation states, you may be able to use a
corresponding Simulink block, instead of a System object.

16



Communications System Toolbox™ Functionality Being Changed or Removed

Communications System Toolbox Functionality Being
Changed or Removed
Compatibility Considerations: Yes

The following function, which was previously announced for removal and
warned at run time, has been removed from the product.

• seqgen.pn

The following functions will be removed in a future release.

Functionality What Happens
When You Use This
Functionality?

Use This Instead Compatibility
Considerations

commmeasure.ACPR Warns comm.ACPR Replace all instances
of commmeasure.ACPR
with comm.ACPR.

commmeasure.EVM Warns comm.EVM Replace all instances
of commmeasure.EVM
with comm.EVM.

commmeasure.MER Warns comm.MER Replace all instances
of commmeasure.MER
with comm.MER.

fec.bchdec Warns comm.BCHDecoder Replace all instances
of fec.bchdec with
comm.BCHDecoder.

fec.bchenc Warns comm.BCHEncoder Replace all instances
of fec.bchenc with
comm.BCHEncoder.

fec.ldpcdec Warns comm.LDPCDecoder Replace all instances
of fec.ldpcdec with
comm.LDPCDecoder.

fec.ldpcenc Warns comm.LDPCEncoder Replace all instances
of fec.ldpcenc with
comm.LDPCEncoder.

17



R2012b

Functionality What Happens
When You Use This
Functionality?

Use This Instead Compatibility
Considerations

fec.rsdec Warns comm.RSDecoder Replace all instances
of fec.rsdec with
comm.RSDecoder.

fec.rsenc Warns comm.RSEncoder Replace all instances
of fec.rsenc with
comm.RSEncoder.

Update Legacy Code to use System objects
For help updating your legacy code so that it uses the new System objects,
refer to the following sections.

Map commmeasure.ACPR Properties and Methods to comm.ACPR

commmseaure.ACPR
property

comm.ACPR
property

Note

Fs SampleRate

MainChannelMeasBW MainMeasurementBandwidth

AdjacentChannelMeasBW AdjacentMeasurementBandwidth

MeasurementFilter MeasurementFilterSource

SpectralEstimatorOptionSpectralEstimation

WindowOption Window

SidelobeAtten SidelobeAttenuation

FrequencyResolutionOptionFrequencyResolution

FFTLength CustomFFTLength

18



Communications System Toolbox™ Functionality Being Changed or Removed

commmseaure.ACPR
property

comm.ACPR
property

Note

MainChannelPowerOutputPort(new
property)

When you set
MainChannelPowerOutputPort
to true, the main
channel power
measurement becomes
an output.

Note Previously, for
the commmeasure.ACPR
object, this was
the second output
argument.

AdjacentChannelPowerOutputPort
(new property)

When you set
AdjacentChannelPowerOutputPort
to true, the adjacent
channel power
measurement becomes
an output.

Note Previously, for
the commmeasure.ACPR
object, this was the
third output argument.

Type N/A This read-only property
was removed.

FrameCount N/A This read-only property
was removed.

19



R2012b

commmseaure.ACPR method comm.ACPR method

run step

reset reset

copy clone

disp N/A

Note commmeasure.ACPR and comm.ACPR have a different API. Refer to the
following syntax examples when updating your legacy code:

commmeasure.ACPR comm.ACPR Note

commmeasure.ACPR comm.ACPR The default settings
of the following are
different:

`NormalizedFrequency'
`MainMeasurementBandwidth'
`AdjacentChannelOffset'
`AdjacentMeasurementBandwidth'
`MeasurementFilterSource'

h = commmeasure.ACPR(
'PowerUnits','linear',
'SpectralEstimatorOption', 'User defined,
'SegmentLength',100);
[act_ACPR, actMainPow, actAdjPow] = run(h,yPulse);
fd = h.MeasurementFilter;

h = comm.ACPR(
'PowerUnits','Watts',
'SpectralEstimation', 'Specify window parameters',
'SegmentLength',100,
'MainChannelPowerOutputPort', true,
'AdjacentChannelPowerOutputPort', true,...
'MeasurementFilterSource', 'property');
[act_ACPR, actMainPow, actAdjPow] = step(h,yPulse);
fdnumerator = h.MeasurementFilter;

MeasurementFilter
changes from a
structure to a variable.

20



Communications System Toolbox™ Functionality Being Changed or Removed

Map commmeasure.EVM Properties and Methods to comm.EVM

commmseaure.EVM
properties

comm.EVM
properties

Note

NormalizationOption Normalization

AveragePower AverageConstellationPower

PeakPower PeakConstellationPower

RSMEVM N/A RSMEVM is an output.

MaximumEVM MaximumEVMOutputPort When you set
MaximumEVMOutputPort
to true, MaximumEVM
becomes an output.

Percentile XPercentileValue XPercentileValue
appears when
you set the
XPercentileEVMOutputPort
to true.

PercentileEVM XPercentileEVMOutputPortWhen you set
XPercentileEVMOutputPort
to true, PercentileEVM
becomes an output.

NumberOfSymbols SymbolCountOutputPort When you set
SymbolCountOutputPort
to true,
NumberOfSymbols
becomes an output.

Type N/A This read-only property
was removed.

commmseaure.EVM methods comm.EVM methods

update (no outputs) step (multiple outputs)

reset reset

copy clone

21



R2012b

Note commmeasure.evm and comm.evm have a different API. Refer to the
following syntax examples when updating your legacy code:

commmeasure.EVM comm.EVM

hEVM = commmeasure.EVM('Percentile', 90);hEVM = comm.EVM('XPercentileEVMOutputPort',

update(hEVM, rcv, xmv)
rmsevm = hEVM.RMSEVM

rmsevm = step(hEVM, rcv, xmv)

update(hEVM, rcv, xmv)
rmsevm = hEVM.RMSEVM
maxevm = hEVM.MaximumEVM
pevm =hEVM.PercentileEVM
numsym = hEVM. NumberOfSymbols

[rmsevm,maxevm,pevm,numsym] = step(hEVM, rcv

Map commmeasure.MER Properties and Methods to comm.MER

commmseaure.MER
properties

comm.MER
properties

Note

MERdb N/A MERdb is an output.

MinimumMER MinimumMEROutputPortWhen you set
MinimumMEROutputPort
to true, MimimumMER
becomes an output.

Percentile XPercentileValue XPercentileValue
appears when
you set the
XPercentileMEROutputPort
to true.

22



Communications System Toolbox™ Functionality Being Changed or Removed

commmseaure.MER
properties

comm.MER
properties

Note

PercentileMER XPercentileMEROutputPortWhen you set
XPercentileMEROutputPort
to true,
PercentileMER
becomes an output.

NumberOfSymbols SymbolCountOutputPort When you set
SymbolCountOutputPort
to true,
NumberOfSymbols
becomes an output.

Type N/A This read-only property
was removed.

commmseaure.MER methods comm.MER methods

update (no outputs) step (multiple outputs)

reset reset

copy clone

Note commmeasure.MER and comm.MER have a different API. Refer to the
following syntax examples when updating your legacy code:

commmseaure.MER comm.MER

hMER = commmeasure.MER('Percentile', 90);hMER = comm.MER('XPercentileMEROutputPort', t

update(hMER, rcv, xmv)merdb = hMER.MERdBmerdb = step(hMER, rcv, xmv)

update(hMER, rcv, xmv)
merdb = hEVM.MERdB

[merdb,minimummer,pmer,numsym] = step(hmer, r

23



R2012b

commmseaure.MER comm.MER

minimummer = hEVM.MinimumMER
pmer = hEVM.PercentileMER
numsym = hEVM. NumberOfSymbols

Map fec.bchenc Properties to comm.BCHEncoder

fec.bchenc property comm.BCHEncoder
property

Note

N CodewordLength

K MessageLength

T The
ErrorCorrectionCapability
element of the Info
methodShortenedLength N/A This information

is included in the
CodewordLength
and MessageLength
properties.

ParityPosition N/A Always 'end'.

PuncturePattern PuncturePattern This property
appears when you set
PuncturePatternSource
to Property.

GenPoly GeneratorPolynomial This property
appears when you set
GeneratorPolynomialSource
to Property.

Type N/A This read-only property
was removed.

Note fec.bchenc and comm.BCHEncoder have a different API. Refer to the
following syntax examples when updating your legacy code:

24



Communications System Toolbox™ Functionality Being Changed or Removed

fec.bchenc comm.BCHEncoder Note

h=fec.bchenc h = comm.BCHEncoder('CodewordLength',7,'MessageLength
Use this syntax to
create the default
configuration of
fec.bchenc.

enc = fec.bchenc(7,4);
msg = [0 1 1 0]';
code = encode(enc,msg);

h = comm.BCHEncoder('CodewordLength',7,'MessageLength
msg = [0 1 1 0]';
code = step(h,msg)

• GeneratorPolynomial
must be a column
vector and
PuncturePattern
must be a row vector.

• The step method
replaces use of the
encode function.

encShort = fec.bchenc(7,4);
encShort.ShortenedLength = 1;
msgShort = [0 1 1]';
codeShort = encode(encShort,msgShort);

h=comm.BCHEncoder(6,3);
msg = [0 1 1]';
code = step(h,msg)

The shortened length
information is included
in the CodewordLength
and MessageLength
properties.

Map fec.bcdec Properties to comm.BCHDecoder

fec.bchdeproperty comm.BCHDecoder
property

Note

N CodewordLength

K MessageLength

T The
ErrorCorrectionCapability
element of the Info
method

This information
is included in the
CodewordLength
and MessageLength
properties.

ShortenedLength N/A

ParityPosition N/A

25



R2012b

fec.bchdeproperty comm.BCHDecoder
property

Note

PuncturePattern PuncturePattern This property
appears when you set
PuncturePatternSource
to Property.

GenPoly GeneratorPolynomial This property
appears when you set
GeneratorPolynomialSource
to Property.

Type N/A This read-only property
was removed.

Note fec.bchdec and comm.BCHDecoder have a different API. Refer to the
following syntax examples when updating your legacy code:

fec.bchdec fec.BCHDecoder Note

h=fec.bchdec h = comm.BCHDecoder('CodewordLength',7,'MessageLength
Use this syntax to
create the default
configuration of
fec.bchdec.

dec = fec.bchdec(7,4);
code = [0 1 1 0 0 0 1].';
msg = decode(dec,code);

h = comm.BCHDecoder('CodewordLength',7,'MessageLength
code = [0 1 1 0 0 0 1].';
msg = step(h,code)

• GeneratorPolynomial
must be a column
vector and
PuncturePattern
must be a row vector.

• The step method
replaces use of the
decode function.

decShort = fec.bchdec(7,4)
decShort.ShortenedLength = 1;
code = [0 1 1 1 0 1].';
msg = decode(decShort,code);

h = comm.BCHDecoder('CodewordLength',6,'MessageLength
code = [0 1 1 1 0 1]';
msg = step(h,code)

The shortened length
information is included
in the CodewordLength
and MessageLength
properties.

26



Communications System Toolbox™ Functionality Being Changed or Removed

Map fec.ldpcenc Properties to comm.LDPCEncoder

fec.ldpcenc property comm.LDPCEncoder
property

Note

ParityCheckMatrix ParityCheckMatrix

BlockLength N/A This read-only property
was removed.

NumInfoBits N/A This read-only property
was removed.

NumParityBits N/A This read-only property
was removed.

EncodingAlgorithm N/A This read-only property
was removed.

Note The comm.LDPCEncoder System object does contain all the read-only
properties of the old object. However, you can obtain the information from the
ParityCheckMatrix.

fec.ldpcenc and comm.LDPCEncoder have a different API. Refer to the
following syntax example when updating your legacy code:

fec.ldpcenc comm.LDPCEEncoder Note

h1 = fec.ldpcenc;
xin = ones(32400,1);
yout1 = encode(h1,xin.')

h = comm.LDPCEncoder;
xin = ones(32400,1);
yout = step(h, xin)

• The fec.ldpcenc
object accepted a row
vector input. The
comm.LDPCEncoder
System object
accepts a column
vector input.

• The step method
replaces use of the
encode function

27



R2012b

Map fec.ldpcdec Properties to comm.LDPCDecoder

fec.ldpcdec property comm.LDPCDecoder
property

Note

ParityCheckMatrix ParityCheckMatrix

DecisionType DecisionMethod

OutputFormat OutputValue

DoParityChecks IterationTerminationConditionSelect Parity check
satisfied.

NumIterations MaximumIterationCount

ActualNumIterations NumIterationsOutputPort

FinalParityChecks FinalParityChecksOutputPort

BlockLength N/A This read-only property
was removed.

NumInfoBits N/A This read-only property
was removed.

NumParityBits N/A This read-only property
was removed.

Note The comm.LDPCDecoder System object does not contain all the
read-only properties of the old object. The ActualNumIterations and
FinalParityChecks properties become outputs.

fec.ldpcdec and comm.LDPCDecoder have a different API. Refer to the
following syntax example when updating your legacy code.

28



Communications System Toolbox™ Functionality Being Changed or Removed

fec.ldpcdec comm.LDPCDecoder Note

h1 = fec.ldpcdec;
yin = ones(64800,1);
yout1 = decode(h1,yin.')

h = comm.LDPCDecoder
yin = ones(64800,1);
yout = step(h,yin)

• The fec.ldpcdec
object accepted a row
vector input. The
comm.LDPCDecoder
System object
accepts a column
vector input.

• The step method
replaces use of the
decode function

Map fec.rsenc Properties to comm.RSEncoder

fec.rsenc comm.RSEncoder Note

N CodewordLength

K MessageLength

T The
ErrorCorrectionCapability
element of the Info
methodShortenedLength N/A This information

is included in the
CodewordLength
and MessageLength
properties.

ParityPosition N/A Always 'end'.

GenPoly GeneratorPolynomial This property
appears when you set
GeneratorPolynomialSource
to Property.

Type N/A This read-only property
was removed.

Note fec.rsenc and comm.RSEncoder have a different API. Refer to the
following syntax examples when updating your legacy code:

29



R2012b

fec.rsenc comm.RSEncoder Note

h=fec.rsenc h = comm.RSEncoder('CodewordLength',7,'MessageLength

h = comm.BCHEncoder('CodewordLength',7,'MessageLength

Use this syntax to
create the default
configuration of
fec.rsenc.

enc = fec.rsenc(7,3);
msg = [0 1 0]';
code = encode(enc,msg);

h = comm.RSEncoder('CodewordLength',7,'MessageLength
msg = [0 1 0]';
code = step(h,msg)

• GeneratorPolynomial
must be a column
vector and
PuncturePatternmust
be a row vector.

• The step method
replaces use of the
encode function.

encShort = fec.rsenc(7,3)
encShort.ShortenedLength = 1;
msgShort = [0 1]';
codeShort = encode(encShort,msgShort);

h = comm.RSEncoder('CodewordLength',6,'MessageLength
msg = [0 1]';
code = step(h,msg)

• The shortened
length information
is included in the
CodewordLength
and MessageLength
properties.

• The step method
replaces use of the
encode function.

Map fec.rsdec Properties to comm.RSDecoder

fec.rsdec comm.RSDecoder Note

N CodewordLength

K MessageLength

T The
ErrorCorrectionCapability
element of the Info
methodShortenedLength N/A This information

is included in the
CodewordLength
and MessageLength
properties.

30



Communications System Toolbox™ Functionality Being Changed or Removed

fec.rsdec comm.RSDecoder Note

ParityPosition N/A Always 'end'.

PuncturePattern PuncturePattern This property
appears when you set
PuncturePatternSource
to Property.

GenPoly GeneratorPolynomial This property
appears when you set
GeneratorPolynomialSource
to Property.

Type N/A This read-only property
was removed.

Note fec.rsdec and comm.RSDecoder have a different API. Refer to the
following syntax examples when updating your legacy code:

fec.rsdec comm.RSDecoder Note

h=fec.rsdec h = comm.RSDecoder('CodewordLength',7,'MessageLength
Use this syntax to
create the default
configuration of
fec.rsdec.

dec = fec.rsdec(7,3);
code = [0 1 1 0 0 0 1].';
msg = decode(dec,code);

h = comm.RSDecoder('CodewordLength',7,'MessageLength
code = [0 1 1 0 0 0 1].';
msg = step(h,code)

• GeneratorPolynomial
must be a column
vector and
PuncturePatternmust
be a row vector.

• The step method
replaces use of the
encode function.

decShort = fec.rsdec(7,3)
decShort.ShortenedLength = 1;
code = [0 1 1 1 0 1].';
msg = decode(decShort,code);

h = comm.RSDecoder('CodewordLength',6,'MessageLength
code = [0 1 1 1 0 1]';
msg = step(h,code)

• The shortened
length information
is included in the
CodewordLength
and MessageLength
properties.

• The step method
replaces use of the
encode function.

31



R2012b

Frame-Based Processing
Compatibility Considerations: Yes

Beginning in R2010b, MathWorks® started to significantly change the
handling of frame-based processing. In the future, frame status will no longer
be a signal attribute. Instead, individual blocks will control whether they
treat inputs as frames of data or as samples of data. For more information,
see “Frame-Based Processing” on page 84.

32



R2012a
Version: 5.2
New Features: Yes
Bug Fixes: No

33



R2012a

MIMO Multipath Fading Channel System Objects

The Communications System Toolbox product now includes a Multiple
Input Multiple Output (MIMO) Multipath Fading Channel System object,
comm.MIMOChannel. Multipath MIMO fading channels allow for design of
communication systems with multiple antenna elements at the transmitter
and receiver. For more information, see the comm.MIMOChannel Help page.

The product also includes an LTE MIMO Multipath Fading Channel
System object, comm.LTEMIMOChannel. This object allows for design of
communication systems with multiple antenna elements at the transmitter
and receiver using the 3GPP Long Term Evolution (LTE) standard. For more
information, see the comm.LTEMIMOChannel Help page.

34

http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/comm.mimochannelclass.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/comm.ltemimochannelclass.html


Multi-H Support for CPM Modulator and Demodulator Simulink® Blocks and MATLAB® System Objects

Multi-H Support for CPM Modulator and Demodulator
Simulink Blocks and MATLAB System Objects

The CPM Modulator Baseband and CPM Demodulator Baseband blocks and
System objects now support Multi-H CPM modulation. These enhancements
allow you to perform research and development work for communication
systems designed with the ARTM, JTRS, or MIL-STD-188–181C
communications standards. For more information, see:

• comm.CPMModulator

• comm.CPMDemodulator

• CPM Modulator Baseband

• CPM Demodulator Baseband

35

http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/comm.cpmmodulatorclass.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/comm.cpmdemodulatorclass.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/cpmmodulatorbaseband.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/cpmdemodulatorbaseband.html


R2012a

GPU System Objects

This release adds new GPU System objects, which use a graphics processing
unit (GPU) to procure simulation results more quickly than a CPU. These
new objects include:

• comm.gpu.ConvolutionalInterleaver

• comm.gpu.ConvolutionalDeinterleaver

• comm.gpu.ConvolutionalEncoder

• comm.gpu.PSKDemodulator

• comm.gpu.TurboDecoder

36

http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/comm.gpu.convolutionalinterleaverclass.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/comm.gpu.convolutionaldeinterleaverclass.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/comm.gpu.convolutionalencoderclass.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/comm.gpu.pskdemodulatorclass.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/comm.gpu.turbodecoderclass.html


MATLAB Compiler Support for GPU System Objects

MATLAB Compiler Support for GPU System Objects

In Release 2012a, you can use the MATLAB Compiler™ product with GPU
System objects. With this capability, MATLAB Compiler software can
generate standalone applications from MATLAB files, including files that
contain GPU System objects.

37



R2012a

Code Generation Support

The following System objects now support C code generation:

• comm.BCHEncoder

• comm.RSEncoder

The following function now supports C code generation:

• bchgenpoly

38

http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/comm.bchencoderclass.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/comm.rsencoderclass.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/bchgenpoly.html


HDL Code Generation from MATLAB code

HDL Code Generation from MATLAB code

The following System objects now support HDL code generation:

• comm.ViterbiDecoder

• comm.PSKModulator

• comm.BPSKModulator

• comm.QPSKModulator

• comm.rectangularQAMmodulator

• comm.ConvolutionalInterleaver

• comm.ConvolutionalDeinterleaver

See also HDL Code Generation from MATLAB.

39

http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/comm.viterbidecoderclass.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/comm.bpskmodulatorclass.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/comm.bpskmodulatorclass.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/comm.qpskmodulatorclass.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/comm.rectangularqammodulatorclass.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/comm.convolutionalinterleaverclass.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/comm.convolutionaldeinterleaverclass.html
http://www.mathworks.com/help/releases/R2012a/toolbox/hdlcoder/ug/bta01v0.html


R2012a

HDL Support For HDL CRC Generator Block

Release R2012a provides HDL code generation support for the new HDL
CRC Generator block.

40



Enhancements for System Objects Defined by Users

Enhancements for System Objects Defined by Users
Compatibility Considerations: Yes

This release contains enhancements for System objects defined by users.

Code Generation for System Objects
System objects defined by users now support C code generation. To generate
code, you must have the MATLAB Coder™ product.

New System Object Option on File Menu
The File menu on the MATLAB desktop now includes a New > System
object menu item. This option opens a System object class template, which
you can use to define a System object class.

Variable-Size Input Support for System Objects
System objects that you define now support inputs that change size at
runtime.

Data Type Support for System Objects
System objects that you define now support all MATLAB data types as inputs
and outputs.

New Property Attribute to Define States
R2012a adds the new DiscreteState attribute for properties in your System
object class definition file. Discrete states are values calculated during one
step of an object’s algorithm that are needed during future steps.

New Methods to Validate Properties and Get States from
System Objects
The following methods have been added:

• validateProperties – Checks that the System object is in a valid
configuration. This applies only to objects that have a defined
validatePropertiesImpl method

41



R2012a

• getDiscreteState – Returns a struct containing a System object’s
properties that have the DiscreteState attribute

matlab.system.System changed to matlab.System
The base System object class name has changed from matlab.system.System
to matlab.System.

Compatibility Considerations

Compatibility Considerations

The previous matlab.system.System class will remain valid for existing
System objects. When you define new System objects, your class file should
inherit from the matlab.System class.

42



New and Enhanced Demos

New and Enhanced Demos

The following demos are new or enhanced for this release:

• IEEE® 802.11 WLAN - Beacon Frame simulates packetized, non-streaming
transmission and reception of beacon frames in an 802.11-based wireless
local area network (WLAN).

• IEEE® 802.16-2009 WirelessMAN-OFDMA PHY Downlink PUSC
simulates a downlink partial usage of subchannels (PUSC) Physical Layer
communication from base station (BS) to two mobile stations. This demo
uses variable-size signals to model dynamic channel allocation between
the two users.

• QPSK Transmitter and Receiver implements a QPSK transmitter and
receiver, including carrier and timing recovery.

• Digital Video Broadcasting - Cable (DVB-C) models part of the ETSI
(European Telecommunications Standards Institute) EN 300 429 standard
for cable system transmission of digital television signals.

• Downlink Transport Channel (DL-SCH) Processing models part of the
transport channel processing for the Downlink Shared Channel (eNodeB
to UE) of the Long Term Evolution (LTE) specifications developed by the
Third Generation Partnership Project (3GPP) .

• Using GPUs To Accelerate Turbo Coding Bit Error Rate Simulations shows
how you can use GPUs to dramatically accelerate bit error rate simulations.

• End to End System Simulation Acceleration Using GPUs compares four
techniques that can be used to accelerate bit error rate (BER) simulations.

43



R2012a

Functionality Being Changed or Removed
Compatibility Considerations: Yes

The following functions will be removed in a future release.

Functionality What Happens
When You Use This
Functionality?

Use This Instead Compatibility
Considerations

rsdecof Warns comm.RSDecoder Replace all instances
of rsdecof with
comm.RSDecoder.

rsencof Warns comm.RSEncoder Replace all instances
of rsencof with
comm.RSEncoder.

The following functions, which were previously announced for removal in a
future release, now warn at run time. You should not use these functions.

Functionality What Happens
When You Use This
Functionality?

Use This Instead Compatibility
Considerations

rcosflt Warns fdesign.pulseshaping • Use
fdesign.interpolator
and
fdesign.decimator
to design multirate
filters.

• Use
fdesign.pulseshaping
to design a
single-rate raised
cosine filter. Does
not support IIR.

rcosiir Warns N/A Do not use.

44

http://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/fdesign.interpolator.html
http://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/fdesign.decimator.html
http://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/fdesign.pulseshaping.html


Functionality Being Changed or Removed

Functionality What Happens
When You Use This
Functionality?

Use This Instead Compatibility
Considerations

rcosine Warns fdesignpulseshaping • Use
fdesign.interpolator
and
fdesign.decimator
to design multirate
filters.

• Use
fdesign.pulseshaping
to design a
single-rate raised
cosine filter. Does
not support IIR.

bchdec Warns comm.BCHDecoder

bchenc Warns comm.BCHEncoder

rsdec Warns comm.RSDecoder

rsenc Warns comm.RSEncoder

randint Warns randi Use randi to generate
matrix of uniformly
distributed random
integers

Several functions, which were previously announced for removal in a future
release and warned at run time, have been removed from the Communications
System Toolbox product. To see the full list of these removed functions,
expand the following section.

Removed Functions

• ademod

• ademodce

• amod

• amodce

45

http://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/fdesign.interpolator.html
http://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/fdesign.decimator.html
http://www.mathworks.com/help/releases/R2012a/toolbox/signal/ref/fdesign.pulseshaping.html


R2012a

• apkconst

• bchdeco

• bchenco

• bchpoly

• constlay

• convdeco

• convenco

• ddemod

• ddemodce

• demodmap

• dmod

• dmodce

• eyescat

• flxor

• gen2abcd

• gfplus

• htruthtb

• imp2sys

• lineprob

• modmap

• oct2gen

• qaskdeco

• qaskenco

• randbit

• rscore

• rsdeco

• rsdecode

46



Functionality Being Changed or Removed

• rsenco

• rsencode

• rspoly

• sim2gen

• sim2gen2

• sim2logi

• sim2tran

• simpassbandex

• simsum

• simsum2

• viterbi

• vitshort

The following function, which was previously announced for removal in a
future release, will remain in the Communications System Toolbox product.

• rcosfir

47

http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/rcosfir.html


R2012a

Frame-Based Processing
Compatibility Considerations: Yes

Beginning in R2010b, MathWorks started to significantly change the handling
of frame-based processing. In the future, frame status will no longer be a
signal attribute. Instead, individual blocks will control whether they treat
inputs as frames of data or as samples of data. For more information, see
“Frame-Based Processing” on page 84.

Inherited Option of the Input Processing Parameter Now
Warns
Some Communications System Toolbox blocks are able to process both sample-
and frame-based signals. After the transition to the new way of handling
frame-based processing, signals will no longer carry information about
their frame status. Blocks that can perform both sample- and frame-based
processing have a new parameter that allows you to specify the appropriate
processing behavior.

To prepare for this change, many blocks received a new Input processing
parameter in previous releases. You can set this parameter to Columns as
channels (frame based) or Elements as channels (sample based),
depending upon the type of processing you want. The third choice, Inherited
(this choice will be removed - see release notes), is a temporary
selection that is available to help you migrate your existing models from the
old paradigm of frame-based processing to the new paradigm.

In this release your model will warn when the following conditions are all met
for any block in your model:

• The Input processing parameter is set to Inherited (this choice
will be removed - see release notes)

• The input signal is sample-based

• The input signal is a vector, matrix, or N-dimensional array

To see a list of Communications System Toolbox blocks that contain the Input
processing parameter, expand the following section.

48



Frame-Based Processing

Blocks with Input Processing Parameter

• AWGN Channel (with only two options)

• Derepeat

• Gaussian Filter

• Ideal Rectangular Pulse Filter

• Raised Cosine Receive Filter

• Raised Cosine Transmit Filter

• Windowed Integrator

Compatibility Considerations

Compatibility Considerations

To eliminate this warning, you must upgrade your existing models using
the slupdate function. The function detects all blocks that have Inherited
(this choice will be removed - see release notes) selected for the
Input processing parameter. It then asks you whether you would like to
upgrade each block. If you select yes, the function detects the status of the
frame bit on the input port of the block. If the frame bit is 1 (frames), the
function sets the Input processing parameter to Columns as channels
(frame based). If the bit is 0 (samples), the function sets the parameter to
Elements as channels (sample based).

In a future release, the frame bit and the Inherited (this choice will
be removed - see release notes) option will be removed. At that time,
the Input processing parameter in models that have not been upgraded
will automatically be set to either Columns as channels (frame based) or
Elements as channels (sample based). The option set will depend on
the library default setting for each block. If the library default setting does
not match the parameter setting in your model, your model will produce
unexpected results. Additionally, after the frame bit is removed, you will no
longer be able to upgrade your models using the slupdate function. Therefore,
you should upgrade your existing modes using slupdate as soon as possible.

49

http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/awgnchannel.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/derepeat.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/gaussianfilter.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/idealrectangularpulsefilter.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/raisedcosinereceivefilter.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/raisedcosinetransmitfilter.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/windowedintegrator.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/slupdate.html


R2012a

Inherited Option of the Rate Options Parameter Now Warns
Some Communications System Toolbox blocks support single-rate or multirate
processing. After the transition to the new paradigm for handling frame-based
processing, signals will no longer carry information about their frame status.
Blocks that can perform both single-rate and multirate processing have a new
parameter that allows you to specify the appropriate processing behavior. To
prepare for this change, many blocks received a new Rate options parameter
in previous releases. You can set this parameter to Enforce single-rate
processing or Allow multirate processing. The third choice, Inherit
from input (this choice will be removed - see release notes), is a
temporary selection that is available to help you migrate your existing models
from the old paradigm of frame-based processing to the new paradigm.

In this release your model will warn when the following conditions are met
for any block in your model:

• The Rate options parameter set to Inherit from input (this choice
will be removed - see release notes)

• The input signal is sample-based

• The input signal is a scalar

To see a full list of Communications System Toolbox blocks that have a new
Rate options parameter, expand the following section.

Blocks with Rate Options Parameter

• OQPSK Modulator Baseband

• OQPSK Demodulator Baseband

• CPM Modulator Baseband

• CPM Demodulator Baseband

• MSK Modulator Baseband

• MSK Demodulator Baseband

• GMSK Modulator Baseband

• GMSK Demodulator Baseband

• CPFSK Modulator Baseband

50

http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/oqpskmodulatorbaseband.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/oqpskdemodulatorbaseband.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/cpmmodulatorbaseband.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/cpmdemodulatorbaseband.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/mskmodulatorbaseband.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/mskdemodulatorbaseband.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/gmskmodulatorbaseband.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/gmskdemodulatorbaseband.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/cpfskmodulatorbaseband.html


Frame-Based Processing

• CPFSK Demodulator Baseband

• M-FSK Demodulator Baseband

• M-FSK Modulator Baseband

Compatibility Considerations

Compatibility Considerations

To eliminate this warning, you must upgrade your existing models using the
slupdate function. The function detects all blocks that have Inherit from
input (this choice will be removed - see release notes) selected
for the Rate options parameter. It then asks you whether you would like
to upgrade each block. If you select yes, the function detects the status of
the frame bit on the input port of the block. If the frame bit is 1 (frames),
the function sets the Rate options parameter to Enforce single-rate
processing. If the bit is 0 (samples), the function sets the parameter to
Allow multirate processing.

In a future release, the frame bit and the Inherit from input (this choice
will be removed - see release notes) option will be removed. At that
time, the Rate options parameter in models that have not been upgraded
will automatically be set to either Enforce single-rate processing or
Allow multirate processing. The option set will depend on the library
default setting for each block. If the library default setting does not match the
parameter setting in your model, your model will produce unexpected results.
Additionally, after the frame bit is removed, you will no longer be able to
upgrade your models using the slupdate function. Therefore, you should
upgrade your existing modes using slupdate as soon as possible.

51

http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/cpfskdemodulatorbaseband.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/mfskdemodulatorbaseband.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/mfskmodulatorbaseband.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/slupdate.html




R2011b
Version: 5.1
New Features: Yes
Bug Fixes: Yes

53



R2011b

New Demos

• The Transceiver Simulation Acceleration demo illustrates simulation
acceleration improvements by comparing simulation times using System
objects with simulation times using MATLAB functions.

• The Parallel Concatenated Convolutional Coding: Turbo Codes demo now
uses the Turbo Encoder and Turbo Decoder blocks and the accompanying
MATLAB script uses the comm.TurboEncoder and comm.TurboDecoder
System objects.

54

http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/turboencoder.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/turbodecoder.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/comm.turboencoderclass.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/comm.turbodecoderclass.html


Turbo Codes

Turbo Codes

Communications System Toolbox now supports turbo codes. These error
correction codes approach the Shannon limit, resulting in low error rates for
transmission schemes with low signal-to-noise ratios. You can implement
turbo codes using either MATLAB System objects or Simulink blocks:

• comm.TurboDecoder

• comm.TurboEncoder

• Turbo Decoder

• Turbo Encoder

55

http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/comm.turbodecoderclass.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/comm.turboencoderclass.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/turbodecoder.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/turboencoder.html


R2011b

USRP2 Migration

Support for the UDP-based USRP2 Transmitter and USRP2 Receiver blocks
is being removed in release R2011b. New USRPTM blocks and System objects
that work with USRPTM radios using the Universal Hardware DriverTM from
Ettus ResearchTM are now available. These new blocks and objects support
buffers with arbitrary frame size. If you have Communications System
Toolbox, you can download and use these new blocks and System objects.

56

http://www.mathworks.com/programs/sdr/usrp.html


GPU System Objects

GPU System Objects

This release adds new GPU System objects, which use a graphics processing
unit (GPU) to procure simulation results more quickly than a CPU. These
new objects include:

• comm.gpu.AWGNChannel

• comm.gpu.BlockDeinterleaver

• comm.gpu.BlockInterleaver

• comm.gpu.PSKModulator

• comm.gpu.ViterbiDecoder

57



R2011b

Custom System Objects

You can now create custom System objects in MATLAB. This capability
allows you to define your own System objects for time-based and data-driven
algorithms, I/O, and visualizations. The System object API provides a set of
implementation and service methods that you incorporate into your code
to implement your algorithm. See Define New System Objects in the DSP
System Toolbox™ documentation for more information.

58

http://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ug/bs4mxcb.html


Variable-Size Support

Variable-Size Support

The following blocks now support variable-size input and/or output signals:

• APP Decoder

• AWGN Channel (Enter commvarsize at the MATLAB command line to
access the library containing this implementation of the block)

• CRC-N Generator

• CRC-N Syndrome Detector

• Error Rate Calculation

• General CRC Generator

• General CRC Syndrome Detector

• OSTBC Combiner

• OSTBC Encoder

• Turbo Decoder (Enter commvarsize at the MATLAB command line to
access the library containing this implementation of the block)

• Turbo Encoder (Enter commvarsize at the MATLAB command line to
access the library containing this implementation of the block)

The following blocks now support puncturing with variable-size signals:

• Convolutional Encoder

• Viterbi Decoder

The following System objects now support variable-size input and/or output
signals:

• comm.APPDecoder

• comm.ConvolutionalEncoder

• comm.CRCDetector

• comm.CRCGenerator

• comm.ErrorRate

59



R2011b

• comm.OSTBCCombiner

• comm.OSTBCEncoder

• comm.TurboDecoder

• comm.TurboEncoder

• comm.ViterbiDecoder

60



System Object Code Generation Support

System Object Code Generation Support

The following System objects support code generation:

• comm.BarkerCode

• comm.DifferentialDecoder

• comm.DifferentialEncoder

• comm.DiscreteTimeVCO

• comm.HadamardCode

• comm.OVSFCode

• comm.TurboEncoder

• comm.TurboDecoder

• comm.WalshCode

61



R2011b

Delayed Reset for Viterbi Decoder

The Viterbi Decoder block and Viterbi Decoder System object now have a
delayed reset option. The delay in the reset action allows the block to support
HDL code generation. To generate HDL code, you must have an HDL Coder
license.

For the Viterbi Decoder block:

• Select Enable reset input port

• Select Delay reset action to next time step. This parameter only
appears when you set the Operation mode parameter to Continuous.

The Viterbi Decoder block resets its internal state after decoding the incoming
data.

For the comm.ViterbiDecoder System object

• Set ResetInputPort to true

• Set DelayedResetAction to true. This property only appears when you set
the ResetInputPort property to true.

• Set TerminationMethod to Continuous

The Viterbi Decoder System object resets its internal state after decoding
the incoming data.

62

http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/viterbidecoder.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/comm.viterbidecoderclass.html


System Objects FullPrecisionOverride Property Added

System Objects FullPrecisionOverride Property
Added
Compatibility Considerations: Yes

A FullPrecisionOverride property has been added to the System objects
listed below. This property is a convenient way to control whether the object
uses full precision to process fixed-point inputs.

When you set this property to true, which is the default, it eliminates the
need to set many fixed-point properties individually. It also hides the display
of these properties (such as RoundingMode, OverflowAction, etc.) because
they are no longer applicable individually.

To set individual fixed-point properties, you must first set
FullPrecisionOverride to false.

Note The CoefficientDataType property is not controlled by
FullPrecisionOverride

This change affects the following System objects:

• comm.IntegrateAndDumpFilter

• comm.PAMDemodulator

• comm.RectangularQAMDemodulator

• comm.GeneralQAMDemodulator

Compatibility Considerations

Compatibility Consideration

All these System objects have their new FullPrecisionOverride property
set to the default, true. If you had set any fixed-point properties to
nondefault values for these objects, those values are ignored. As a result,
you may see different numerical answers from those answers in a previous
release. To use your nondefault fixed-point settings, you must first change
FullPrecisionOverride to false.

63

http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/comm.integrateanddumpfilterclass.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/comm.pamdemodulatorclass.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/comm.rectangularqamdemodulatorclass.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/comm.generalqamdemodulatorclass.html


R2011b

APP Decoder System Object Parameter Change
Compatibility Considerations: Yes

For the APP Decoder System object, the Algorithm property replaces the
MetricMethod property. At this time, existing customer code continues to
work; however, a warning prompts you to update the code.

Compatibility Considerations

Compatibility Consideration

If you have any existing System object code that uses the MetricMethod
property, you should use the sysobjupdate function to update your code. For
more information, type help sysobjupdate at the MATLAB command line.

64

http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/comm.appdecoderclass.html


System Object DataType and CustomDataType Properties Changes

System Object DataType and CustomDataType
Properties Changes
Compatibility Considerations: Yes

When you set a System object, fixed-point <xxx>DataType property to
`Custom', it activates a dependent Custom<xxx>DataType property. If
you set that dependent Custom<xxx>DataType property before setting its
<xxx>DataType property, a warning message displays. <xxx> differs for
each object.

Compatibility Considerations

Compatibility Considerations

Previously, setting the dependent Custom<xxx>DataType property would
automatically change its <xxx>DataType property to `Custom'. If you have
code that sets the dependent property first, avoid warnings by updating
your code. Set the <xxx>DataType property to `Custom' before setting its
Custom<xxx>DataType property.

Note If you have a Custom<xxx>DataType in your code, but do not explicitly
update your code to change <xxx>DataType to `Custom', you may see
different numerical output.

65



R2011b

Conversion of System Object Error and Warning
Message Identifiers
Compatibility Considerations: Yes

For R2011b, error and warning message identifiers for System objects have
changed in Communications System Toolbox software.

Compatibility Considerations

Compatibility Considerations

If you have scripts or functions that use message identifiers that changed,
you must update the code to use the new identifiers. Typically, message
identifiers are used to turn off specific warning messages. You can also use
them in code that uses a try/catch statement and performs an action based
on a specific error identifier.

For example, the MATLAB:system:System:inputSpecsChangedWarning
identifier has changed to MATLAB:system:inputSpecsChangedWarning . If
your code checks for MATLAB:system:System:inputSpecsChangedWarning,
you must update it to check for MATLAB:system:inputSpecsChangedWarning
instead.

To determine the identifier for a warning, run the following command just
after you see the warning:

[MSG,MSGID] = lastwarn;

This command saves the message identifier to the variable MSGID.

To determine the identifier for an error, run the following command just
after you see the error:

exception = MException.last;
MSGID = exception.identifier;

Warning messages indicate a potential issue with your code. While you can
turn off a warning, a suggested alternative is to change your code so it runs
without warnings.

66



Frame-Based Processing

Frame-Based Processing

Beginning in R2010b, MathWorks started to significantly change the handling
of frame-based processing. In the future, frame status will no longer be a
signal attribute. Instead, individual blocks will control whether they treat
inputs as frames of data or as samples of data. For more information, see
“Frame-Based Processing” on page 84.

67





R2011a
Version: 5.0
New Features: Yes
Bug Fixes: Yes

69



R2011a

Product Restructuring

The Communications System Toolbox product replaces two pre-existing
products: Communications Blockset and Communications Toolbox. You can
access archived documentation for both products on the MathWorks Web site.

70

http://www.mathworks.com/help/doc-archives.html


LDPC Encoder and Decoder System Objects

LDPC Encoder and Decoder System Objects

This release adds new comm.LDPCEncoder and comm.LDPCDecoder System
objects. These new System objects provide simulation of low-density,
parity-check codes.

71

http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/comm.ldpcencoderclass.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/comm.ldpcdecoderclass.html


R2011a

LDPC GPU Decoder System Object

This release adds a new comm.gpu.LDPCDecoder System object, which uses
a graphics processing unit (GPU) to decode low-density, parity-check codes.
This new System object procures simulation results more quickly than a CPU.

72

http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/comm.gpu.ldpcdecoderclass.html


Variable-Size Support

Variable-Size Support

The following blocks now support variable-size input signals:

• M-PSK Modulator Baseband

• QPSK Modulator Baseband

• BPSK Modulator Baseband

• M-PAM Modulator Baseband

• Rectangular QAM Modulator Baseband

• General QAM Modulator Baseband

• M-PSK Demodulator Baseband

• QPSK Demodulator Baseband

• BPSK Demodulator Baseband

• M-PAM Demodulator Baseband

• Rectangular QAM Demodulator Baseband

• General QAM Demodulator Baseband

• Bit to Integer Converter

• Integer to Bit Converter

• Convolutional Encoder

• Viterbi Decoder

The following source blocks can now output variable-size signals:

• Gold Sequence Generator

• Kasami Sequence Generator

• PN Sequence Generator

The following System objects now support variable-size input signals:

• comm.PSKModulator

• comm.QPSKModulator

73



R2011a

• comm.BPSKModulator

• comm.PAMModulator

• comm.RectangularQAMModulator

• comm.GeneralQAMModulator

• comm.PSKDemodulator

• comm.QPSKDemodulator

• comm.BPSKDemodulator

• comm.PAMDemodulator

• comm.RectangularQAMDemodulator

• comm.GeneralQAMDemodulator

• comm.IntegerToBit

• comm.BitToInteger

The following System objects now output variable-size signals:

• comm.GoldSequence

• comm.KasamiSequence

• comm.PNSequence

74



Algorithm Improvements for CRC Blocks

Algorithm Improvements for CRC Blocks

This release introduces a new encoding algorithm for all blocks in the CRC
sublibrary residing in the Error Detection and Correction library. In this new
implementation, the block processes multiple input bits in one step, resulting
in faster processing times. The previous implementation always processed
one input bit at each step.

75



R2011a

MATLAB Compiler Support for System Objects

The Communications System Toolbox supports the MATLAB Compiler
for most System objects. With this capability, you can use the MATLAB
Compiler to take MATLAB files, which can include System objects, as input
and generate standalone applications.

The following System objects are not supported by the MATLAB Compiler
software:

76



’Internal rule’ System Object Property Values Changed to ’Full precision’

’Internal rule’ System Object Property Values
Changed to ’Full precision’
Compatibility Considerations: Yes

To clarify the value of many DataType properties, the 'Internal rule'
option has been changed to 'Full precision'.

Compatibility Considerations

Compatibility Consideration

The objects allow you to enter either 'Internal rule' or 'Full precision'.
If you enter 'Internal rule', that option is stored as 'Full precision'.

77



R2011a

System Object Code Generation Support

The following System objects support code generation:

• comm.PSKTCMMoldulator

• comm.RectangularQAMTCMModulator

• comm.GeneralQAMTCMModulator

• comm.EarlyLateGateTimingSynchronizer

• comm.GardnerTimingSynchronizer

• comm.GMSKTimingSynchronize

• comm.MSKTimingSynchronizer

• comm.MuellerMullerTimingSynchronizer

• comm.KasamiSequence

78



LDPC Decoder Block Warnings

LDPC Decoder Block Warnings
Compatibility Considerations: Yes

Communications System Toolbox software uses a new implementation of the
LDPC Decoder block. If you open a previously existing model that contains
the LDPC block, the model generates a warning at the MATLAB command
line. Simply resave the model to prevent any subsequent warnings.

79



R2011a

Phase/Frequency Offset Block and System Object
Change
Compatibility Considerations: Yes

In previous releases, when the frequency offset input signal to the
Phase/Frequency Offset block or comm.PhaseFrequencyOffset System object
was constant, or time-invariant, the block and System object generated
the correct output. However, the block and System object produced
incorrect results for a time-varying frequency offset input signal. The new
implementation generates the correct output for a time-varying frequency
offset input signal.

80

http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/phasefrequencyoffset.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/comm.phasefrequencyoffsetclass.html


Derepeat Block Changes

Derepeat Block Changes

The Derepeat block now contains the Input processing and Rate options
parameters. See Frame-Based Processing for more information.

81

http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/derepeat.html


R2011a

Version 2, 2.5, and 3.0 Obsolete Blocks Removed
Compatibility Considerations: Yes

All the obsolete block libraries associated with Communications Blockset
version 2 Release 12, version 2.5 Release 13, and version 3.0 Release 14 have
been removed from this product. The removal includes the following libraries:

• commanabbnd2

• commcontsrc2

• commdigpbndam2

• commdigpbndcpm2

• commdigpbndfm2

• commdigpbndpm2

• comminteg2

• commanapbnd2

• commchan2

• commdigbbndam2

• commdigbbndpm2

Compatibility Considerations

Compatibility Considerations

Communications System Toolbox software does not support any of the blocks
from Release 12 and Release 13. The Communications System Toolbox block
libraries provide some of the same functionality in the form of upgraded
blocks.

82



System Objects Input and Property Warnings Changed to Errors

System Objects Input and Property Warnings
Changed to Errors
Compatibility Considerations: Yes

When a System object is locked (for example, after the step method has been
called), the following situations now produce an error. This change prevents
the loss of state information.

• Changing the input data type

• Changing the number of input dimensions

• Changing the input complexity from real to complex

• Changing the data type, dimension, or complexity of tunable property

• Changing the value of a nontunable property

Compatibility Considerations

Compatibility Consideration

Previously, the object issued a warning for these situations. The object then
unlocked, reset its state information, relocked, and continued processing. To
update existing code so that it does not produce an error, use the release
method before changing any of the items listed above.

83



R2011a

Frame-Based Processing
Compatibility Considerations: Yes

In signal processing applications, you often need to process sequential samples
of data at once as a group, rather than one sample at a time. Communications
System Toolbox documentation refers to the former as frame-based processing
and the latter as sample-based processing. A frame is a collection of samples
of data, sequential in time.

Historically, Simulink-family products that can perform frame-based
processing propagate frame-based signals throughout a model. The frame
status is an attribute of the signals in a model, just as data type and
dimensions are attributes of a signal. The Simulink engine propagates the
frame attribute of a signal by means of a frame bit, which can either be on or
off. When the frame bit is on, Simulink interprets the signal as frame based
and displays it as a double line, rather than the single line sample-based
signal.

General Product-Wide Changes
Beginning in R2010b, MathWorks started to significantly change the handling
of frame-based processing. In the future, frame status will no longer be a
signal attribute. Instead, individual blocks will control whether they treat
inputs as frames of data or as samples of data. To learn how a particular
block handles its input, you can refer to the block reference page.

To transition to the new paradigm of frame-based processing, many blocks
have received new parameters. The following sections provide more
detailed information about the specific Communications System Toolbox
software changes that are helping to enable the transition to the new way
of frame-based processing:

• “Blocks with a New Input Processing Parameter” on page 86

• “Multirate Processing Parameter Changes” on page 88

• “Sample-Based Row Vector Processing Changes” on page 90

84

http://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ug/bso3pkj.html#bso3re7


Frame-Based Processing

Compatibility Considerations

Compatibility Considerations

During this transition to the new way of handling frame-based processing,
both the old way (frame status as an attribute of a signal) and the new way
(each block controls whether to treat inputs as samples or as frames) will
coexist for a few releases. For now, the frame bit will still flow throughout
a model, and you will still see double signal lines in your existing models
that perform frame-based processing.

• Backward Compatibility— By default, when you load an existing model
in R2010b any new parameters related to the frame-based processing
change will be set to their backward-compatible option. For example, if any
blocks in your existing models received the Input processing parameter,
the parameter will be set to Inherited (this choice will be removed
- see release notes) when you load your model. This setting enables
your existing models to continue working as expected until you upgrade
them. Because the inherited option will be removed in a future release, you
should upgrade your existing models as soon as possible.

• slupdate Function — To upgrade your existing models to the new way
of handling frame-based processing, you can use the slupdate function.
Your model must be compilable in order to run the slupdate function. The
function detects all blocks in your model that are in need of updating, and
asks you whether you would like to upgrade each block. If you select yes,
the slupdate function updates your blocks accordingly.

• Timely Update to Avoid Unexpected Results — It is important to
update your existing models as soon as possible because the frame bit will
be removed in a future release. At that time, any blocks that have not yet
been upgraded to work with the new paradigm of frame-based processing
will automatically transition to perform their library default behavior. The
library default behavior of the block might not produce the results you
expected, thus causing undesired results in your models. Once the frame
bit is removed, you will no longer be able to upgrade your models using the
slupdate function. Therefore, you should upgrade your existing modes
using slupdate as soon as possible.

85

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/slupdate.html


R2011a

For more detailed information about the specific compatibility considerations
related to the R2010b frame-based processing changes, see the following
Compatibility Considerations sections.

Blocks with a New Input Processing Parameter
Some Communications System Toolbox blocks are able to process both
sample- and frame-based signals. After the transition to the new way of
handling frame-based processing, signals will no longer carry information
about their frame status. Blocks that can perform both sample- and
frame-based processing will require a new parameter that allows you to
specify the appropriate processing behavior. To prepare for this change, many
blocks received a new Input processing parameter. You can select Columns
as channels (frame based) or Elements as channels (sample based),
depending upon the type of processing you want. The third choice, Inherited
(this choice will be removed - see release notes), is a temporary
selection. This additional option will help you to migrate your existing models
from the old paradigm of frame-based processing to the new paradigm.

For a list of blocks that received a new Input processing parameter, expand
the following list.

Blocks with New Input Processing Parameter

• Derepeat

• Gaussian Filter

• Windowed Integrator

• AWGN Channel (with only two options)

Compatibility Considerations

Compatibility Considerations

When you load an existing model R2010b, any block with the new Input
processing parameter will show a setting of Inherited (this choice will
be removed - see release notes). This setting enables your existing
models to continue to work as expected until you upgrade them. Although

86

http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/derepeat.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/gaussianfilter.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/windowedintegrator.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/awgnchannel.html


Frame-Based Processing

your old models will still work when you open and run them in R2010b, you
should upgrade them as soon as possible.

You can upgrade your existing models, using the slupdate function. The
function detects all blocks that have Inherited (this choice will
be removed - see release notes) selected for the Input processing
parameter, and asks you whether you would like to upgrade each block. If
you select yes for the Gaussian Filter or Windowed Integrator, the function
detects the status of the frame bit on the input port of the block. If the frame
bit is 1 (frames), the function sets the Input processing parameter to
Columns as channels (frame based). If the bit is 0 (samples), the function
sets the parameter to Elements as channels (sample based).

In a future release, the frame bit and the Inherited (this choice will
be removed - see release notes) option will be removed. At that time,
the Input processing parameter in models that have not been upgraded
will automatically be set to either Columns as channels (frame based) or
Elements as channels (sample based), depending on the library default
setting for each block. If the library default setting does not match the
parameter setting in your model, your model will produce unexpected results.
Additionally, after the frame bit is removed, you will no longer be able to
upgrade your models using the slupdate function. Therefore, you should
upgrade your existing modes using slupdate as soon as possible.

AWGN Channel Block Changes
The AWGN Channel block uses the new method of “Frame-Based Processing”
on page 84. In previous releases, the frame status of the input signal
determined how the AWGN Channel block processed the signal. In R2010b,
the default behavior of the AWGN Channel block is to always perform
frame-based processing.

Unless you specify otherwise, the block now treats each column of the input
signal as an individual channel, regardless of its frame status. To enable
the behavior change in the AWGN Channel block while still allowing for
backward compatibility, an Input processing parameter has been added.
This parameter will be removed in a future release, at which point the block
will always perform frame-based processing.

87

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/slupdate.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/awgnchannel.html


R2011a

Compatibility Considerations

Compatibility Considerations

The Input processing parameter will be removed in a future release. At
that point in time, the AWGN Channel block will always perform frame-based
processing.

You can use the slupdate function to upgrade your existing models that
contain an AWGN Channel block. The function detects all AWGN Channel
blocks in your model and, if you allow it to, performs the following actions:

• If the input to the block is an M-by-1 or unoriented sample-based signal,
the slupdate function performs three actions. First, a Transpose block
is placed in front of the AWGN Channel block in your model. This block
transposes the M-by-1 or unoriented sample-based input into a 1-by-M
row vector. By converting the input to a row vector, the block continues
to produce the same results as in previous releases. The slupdate
function also sets the Input processing parameter to Columns as
channels (frame based). This setting ensures that your model will
continue to produce the same results when the Input processing
parameter is removed in a future release. The slupdate function also
adds a Transpose block after the AWGN channel block in your model for
an M-by-1 sample-based input and a Reshape block for unoriented inputs.
By converting the row vector output of the AWGN channel to the input
dimension, the model continues to behave as in prior releases.

• If the input to the block is not an M-by-1 or unoriented sample-based
signal, the slupdate function sets the Input processing parameter to
Columns as channels (frame based). This setting does not affect the
behavior of your current model. However, the change does ensure that
your model will continue to produce the same results when the Input
processing parameter is removed in a future release.

Multirate Processing Parameter Changes
In R2010a and earlier releases, many Communications System Toolbox
blocks that supported multirate processing had a Framing parameter. This
parameter allowed you to specify whether the block should Maintain input
frame size or Maintain input frame rate when processing the input
signal. Beginning in R2010b, a new Rate options parameter replaced the

88

http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/slupdate.html
http://www.mathworks.com/help/releases/R2012a/toolbox/dsp/ref/transpose.html
http://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/reshape.html


Frame-Based Processing

Framing parameter. The Rate options parameter allows you to specify
whether the block should Enforce single-rate processing or Allow
multirate processing.

Some blocks that supported multirate processing in R2010a and earlier
releases did not have a Framing parameter. These blocks used the frame
status of the input signal to determine whether they performed single-rate
or multirate processing. Because of the upcoming frame-based processing
changes, signals will no longer carry their frame status. Thus, multirate
blocks can no longer rely on the frame status of the input signal to determine
whether they perform single-rate or multirate processing. You must now
specify a value for the Rate options parameter on the block dialog box.

To see a full list of blocks that have a new Rate options parameter, expand
the following section.

Multirate Blocks with a New Rate Options Parameter

• Raised Cosine Receive Filter

• Raised Cosine Transmit Filter

• Ideal Rectangular Pulse Filter

• OQPSK Modulator Baseband

• OQPSK Demodulator Baseband

• CPM Modulator Baseband

• CPM Demodulator Baseband

• MSK Modulator Baseband

• MSK Demodulator Baseband

• GMSK Modulator Baseband

• GMSK Demodulator Baseband

• CPFSK Modulator Baseband

• CPFSK Demodulator Baseband

• M-FSK Demodulator Baseband

• M-FSK Modulator Baseband

89

http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/raisedcosinereceivefilter.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/raisedcosinetransmitfilter.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/idealrectangularpulsefilter.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/oqpskmodulatorbaseband.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/oqpskdemodulatorbaseband.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/cpmmodulatorbaseband.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/cpmdemodulatorbaseband.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/mskmodulatorbaseband.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/mskdemodulatorbaseband.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/gmskmodulatorbaseband.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/gmskdemodulatorbaseband.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/cpfskmodulatorbaseband.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/cpfskdemodulatorbaseband.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/mfskdemodulatorbaseband.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/mfskmodulatorbaseband.html


R2011a

• Derepeat

Sample-Based Row Vector Processing Changes
The following blocks do not process sample-based row vectors:

• APP Decoder

• Convolutional Encoder

• Viterbi Decoder

• Algebraic Deinterleaver

• Algebraic Interleaver

• General Block Deinterleaver

• General Block Interleaver

• Matrix Deinterleaver

• Matrix Helical Scan Deinterleaver

• Matrix Helical Scan Interleaver

• Matrix Interleaver

• Random Deinterleaver

• Random Interleaver

• M-PAM Modulator Baseband

• Rectangular QAM Modulator Baseband

• DQPSK Modulator Baseband

• M-DPSK Modulator Baseband

• M-PSK Modulator Baseband

• OQPSK Modulator Baseband

• QPSK Modulator Baseband

• M-FSK Modulator Baseband

• CPFSK Modulator Baseband

• CPM Modulator Baseband

90

http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/derepeat.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/appdecoder.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/convolutionalencoder.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/viterbidecoder.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/algebraicdeinterleaver.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/algebraicinterleaver.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/generalblockdeinterleaver.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/generalblockinterleaver.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/matrixdeinterleaver.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/matrixhelicalscandeinterleaver.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/matrixhelicalscaninterleaver.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/matrixinterleaver.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/randomdeinterleaver.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/randominterleaver.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/mpammodulatorbaseband.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/rectangularqammodulatorbaseband.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/dqpskmodulatorbaseband.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/mdpskmodulatorbaseband.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/mpskmodulatorbaseband.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/oqpskmodulatorbaseband.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/qpskmodulatorbaseband.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/mfskmodulatorbaseband.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/cpfskmodulatorbaseband.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/cpmmodulatorbaseband.html


Frame-Based Processing

• Insert Zero

• Puncture

• Bit to Integer Converter

• Integer to Bit Converter

Compatibility Considerations

Compatibility Considerations

Using existing models that contain these blocks to process sample-based row
vectors generates an error message.

CMA Equalizer Changes
The CMA Equalizer block now handles input signals like the other equalizer
blocks in the Communications Blockset library. Therefore, the block no longer
accepts scalar input signals in symbol-spaced mode.

Differential Encoder Changes
The Differential Encoder block supports scalar-valued and column vector
input signals. It does not support frame-based or sample-based row vectors.

Find Delay and Align Signal Block Changes
The Correlation window length parameter specifies the number of samples
the block uses to calculate the cross-correlation of two signals. You must
specify a window lengths of at least 2 for the cross-correlation calculations. If
you set the Correlation window length parameter to 1, the block generates
an error message. The following blocks contain the Correlation window
length parameter:

• Find Delay

• Align Signals

91

http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/insertzero.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/puncture.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/bittointegerconverter.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/integertobitconverter.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/finddelay.html
http://www.mathworks.com/help/releases/R2012a/toolbox/comm/ref/alignsignals.html


R2011a

New Demos

This release contains the following new demos:

• Parallel Concatenated Convolutional Coding: Turbo Codes

• Go-Back-N ARQ with PHY Layer

• Adaptive MIMO System with OSTBC

• CORDIC-Based QPSK Carrier Synchronization

• DVB-S.2 Link, Including LDPC Coding

• DVB-S.2 System Simulation Using a GPU-Based LDPC Decoder System
Object

92


	toc
	R2012b
	Support for C code generation for all System objects in Communic
	Support for HDL code generation for Reed-Solomon encoder, decode
	Support for HDL code generation for Rectangular QAM and PSK Demo
	LTE Zadoff-Chu sequence generator function
	LTE downlink shared channel example
	Phase Noise block and System object, specifying phase noise spec
	IEEE 802.11 beacon with captured data example
	P25 spectrum sensing example
	MATLAB-based QPSK transceiver example
	Design Iteration Workflow
	Constellation method for modulator and demodulator System object
	Specify initial states of Gold Sequence Generator and PN Sequenc
	System object tunable parameter support in code generation
	save and load for System objects
	Save and restore SimState not supported for System objects
	Communications System Toolbox Functionality Being Changed or Rem
	Update Legacy Code to use System objects
	Map commmeasure.ACPR Properties and Methods to comm.ACPR
	Map commmeasure.EVM Properties and Methods to comm.EVM
	Map commmeasure.MER Properties and Methods to comm.MER
	Map fec.bchenc Properties to comm.BCHEncoder
	Map fec.bcdec Properties to comm.BCHDecoder
	Map fec.ldpcenc Properties to comm.LDPCEncoder
	Map fec.ldpcdec Properties to comm.LDPCDecoder
	Map fec.rsenc Properties to comm.RSEncoder
	Map fec.rsdec Properties to comm.RSDecoder

	Frame-Based Processing

	R2012a
	MIMO Multipath Fading Channel System Objects
	Multi-H Support for CPM Modulator and Demodulator Simulink Block
	GPU System Objects
	MATLAB Compiler Support for GPU System Objects
	Code Generation Support
	HDL Code Generation from MATLAB code
	HDL Support For HDL CRC Generator Block
	Enhancements for System Objects Defined by Users
	Code Generation for System Objects
	New System Object Option on File Menu
	Variable-Size Input Support for System Objects
	Data Type Support for System Objects
	New Property Attribute to Define States
	New Methods to Validate Properties and Get States from System Ob
	matlab.system.System changed to matlab.System

	New and Enhanced Demos
	Functionality Being Changed or Removed
	Removed Functions
	Frame-Based Processing
	Inherited Option of the Input Processing Parameter Now Warns
	Blocks with Input Processing Parameter
	Inherited Option of the Rate Options Parameter Now Warns
	Blocks with Rate Options Parameter


	R2011b
	New Demos
	Turbo Codes
	USRP2 Migration
	GPU System Objects
	Custom System Objects
	Variable-Size Support
	System Object Code Generation Support
	Delayed Reset for Viterbi Decoder
	System Objects FullPrecisionOverride Property Added
	APP Decoder System Object Parameter Change
	System Object DataType and CustomDataType Properties Changes
	Conversion of System Object Error and Warning Message Identifier
	Frame-Based Processing

	R2011a
	Product Restructuring
	LDPC Encoder and Decoder System Objects
	LDPC GPU Decoder System Object
	Variable-Size Support
	Algorithm Improvements for CRC Blocks
	MATLAB Compiler Support for System Objects
	'Internal rule' System Object Property Values Changed to 'Full p
	System Object Code Generation Support
	LDPC Decoder Block Warnings
	 Phase/Frequency Offset Block and System Object Change
	Derepeat Block Changes
	Version 2, 2.5, and 3.0 Obsolete Blocks Removed
	System Objects Input and Property Warnings Changed to Errors
	Frame-Based Processing
	General Product-Wide Changes
	Blocks with a New Input Processing Parameter
	Blocks with New Input Processing Parameter
	AWGN Channel Block Changes
	Multirate Processing Parameter Changes
	Multirate Blocks with a New Rate Options Parameter
	Sample-Based Row Vector Processing Changes
	CMA Equalizer Changes
	Differential Encoder Changes
	Find Delay and Align Signal Block Changes

	New Demos



